

Mathematics: Semester-IV

M.Sc (CBCS)

Department of Mathematics

Mugberia Gangadhar Mahavidyalaya

PAPER - MTM-401

Paper: Functional Analysis

- 1. What is Hilbert-adjoint operator? Show that the Hilbert-adjoint operator T^* of $: H_1 \to H_2$, where H_1 and H_2 are Hilbert spaces exists, unique and is a bounded linear operator with norm $||T^*|| = ||T||$.
- If {e₁, e₂, e₃, ..., e_n} is a finite orthonormal set in an inner product space X and x is any element of X, then prove that ∑ⁿ_{i=1} |⟨x, e_j⟩|² ≤ ||x||². When equality holds?
- 3. Prove that inner product is continuous.
- 4. Show that a subspace *M* of a complete metric space *X* is itself complete if and only if the set *M* is closed in *X*.
- 5. Show that the dual space of a normed space is a Banach space.
- 6. Give the definition of Closed Linear Operator in sequential form. State and prove Open Mapping Theorem.
- 7. Show that the space l^p is complete; here p is fixed and $1 \le p < +\infty$.
- 8. Give an example of an incomplete metric space and justify your answer.
- 9. Show that a Hilbert space H is separable if every orthonormal set in H is countable.
- 10.Discuss strong convergence and weak convergence. State and prove Uniform Boundedness principle.

- 11. State and prove Hann-Banach Extension theorem. Define Quotient space with norm.
- 12. Let X and Y be inner product spaces. Then a linear map $F: X \to Y$ satisfies $\langle F(x), F(y) \rangle = \langle x, y \rangle$ for all $x, y \in X$ if and only if it satisfies ||F(x)|| = ||x|| for all $x \in X$, where the norms on X and Y are induced by the respective inner products.
- 13.Let $P \in BL(\mathcal{H})$ be a nonzero projection on a Hilbert space \mathcal{H} and ||P|| = 1. Then show that *P* is an orthogonal projection.
- 14.Let the space $l^2(\mathbb{Z})$ be defined as the space of all two- sided square summable sequences and the bilateral shift is the operator W on $l^2(\mathbb{Z})$ defined by $W(\dots, a_{-2}, a_{-1}, \hat{a}_0, a_1, a_2, \dots) = (\dots, a_{-3}, a_{-2}, \hat{a}_{-1}, a_0, a_1, \dots)$. Prove that

(i)W is unitary, and

(ii) the adjoint W^* of W is given by $W^*(..., a_{-2}, a_{-1}, \hat{a}_0, a_1, a_2, ...) = (..., a_{-1}, a_0, \hat{a}_1, a_2, a_3, ...).$

- 15. Let X and Y be two normed linear spaces over the same field of scalars and let $T : X \to Y$ be a linear operator that sends a convergent sequence in X to a bounded sequence in Y. Prove that T is a bounded linear operator.
- 16. Let X and Y be Banach spaces and $A \in BL(X, Y)$. Show that there is a constant c > 0 such that $||Ax|| \ge c ||x||$ for all $x \in X$ if and only if $Ker(A) = \{0\}$ and Ran(A) is closed in X.
- 17. Let $T : C[0,1] \to C[0,1]$ be defined by $T(t) = \int_0^t x(\tau) d\tau$. Find R(T) and obtain $T^{-1}: R(T) \to C[0,1]$. Examine if T^{-1} is linear and bounded.
- 18. Show that $\langle Ae_j, e_i \rangle = (i + j + 1)^{-1}$ for $0 \le i, j \le \infty$ defines a bounded operator $l^2(\mathbb{N} \cup \{0\})$ with $||A|| \le \pi$.
- 19.Let $S \in BL(\mathcal{H})$ where \mathcal{H} is a Hilbert space. Prove that for all $x, y \in \mathcal{H}$, $\langle Sx, y \rangle = \frac{1}{4} \sum_{n=0}^{3} i^n \langle S(x + i^n y), (x + i^n y) \rangle$.
- 20. Check whether $C^{1}[0, 1]$ with the supremum norm is a Banach space
- 21. Show that the space l^p is complete, here p is fixed and $1 \le p \le \infty$.
- 22.Let $T: X \to Y$ be a continuous linear operator. Show that the Null space $\mathcal{N}(T)$ is closed.

23. Prove that a mapping T of a metric space X into a Metric space Y is continuous if and only if the inverse image of any open subset of Y is an open subset of X.

_____End_____