ASSIGNMENT SET - I

Mathematics: Semester-IV

M.Sc (CBCS)

Department of Mathematics

Mugberia Gangadhar Mahavidyalaya

PAPER - MTM-401

Paper: Functional Analysis

1. What is Hilbert-adjoint operator? Show that the Hilbert-adjoint operator T^{*} of : $H_{1} \rightarrow H_{2}$, where H_{1} and H_{2} are Hilbert spaces exists, unique and is a bounded linear operator with norm $\left\|T^{*}\right\|=\|T\|$.
2. If $\left\{e_{1}, e_{2}, e_{3}, \ldots, e_{n}\right\}$ is a finite orthonormal set in an inner product space X and x is any element of X , then prove that $\sum_{i=1}^{n}\left|\left\langle x, e_{j}\right\rangle\right|^{2} \leq\|x\|^{2}$. When equality holds?
3. Prove that inner product is continuous.
4. Show that a subspace M of a complete metric space X is itself complete if and only if the set M is closed in X.
5. Show that the dual space of a normed space is a Banach space.
6. Give the definition of Closed Linear Operator in sequential form. State and prove Open Mapping Theorem.
7. Show that the space l^{p} is complete; here p is fixed and $1 \leq p<+\infty$.
8. Give an example of an incomplete metric space and justify your answer.
9. Show that a Hilbert space H is separable if every orthonormal set in H is countable.
10.Discuss strong convergence and weak convergence. State and prove Uniform Boundedness principle.
10. State and prove Hann-Banach Extension theorem. Define Quotient space with norm.
11. Let X and Y be inner product spaces. Then a linear map $F: X \rightarrow$ Y satisfies $\langle F(x), F(y)\rangle=\langle x, y\rangle$ for all $x, y \in X$ if and only if it satisfies $\|F(x)\|=\|x\|$ for all $x \in X$, where the norms on X and Y are induced by the respective inner products.
12. Let $P \in B L(\mathcal{H})$ be a nonzero projection on a Hilbert space \mathcal{H} and $\|P\|=$ 1. Then show that P is an orthogonal projection.
14.Let the space $l^{2}(\mathbb{Z})$ be defined as the space of all two- sided square summable sequences and the bilateral shift is the operator W on $l^{2}(\mathbb{Z})$ defined by $W\left(\ldots, a_{-2}, a_{-1}, \hat{a}_{0}, a_{1}, a_{2}, \ldots\right)=\left(\ldots, a_{-3}, a_{-2}, \hat{a}_{-1}, a_{0}, a_{1}, \ldots\right)$. Prove that
(i) W is unitary, and
(ii) the adjoint W^{*} of W is given by $W^{*}\left(\ldots, a_{-2}, a_{-1}, \hat{a}_{0}, a_{1}, a_{2}, \ldots\right)=$ (..., $a_{-1}, a_{0}, \hat{a}_{1}, a_{2}, a_{3}, \ldots$).
13. Let X and Y be two normed linear spaces over the same field of scalars and let $T: X \rightarrow Y$ be a linear operator that sends a convergent sequence in X to a bounded sequence in Y. Prove that T is a bounded linear operator.
14. Let X and Y be Banach spaces and $A \in B L(X, Y)$. Show that there is a constant $c>0$ such that $\|A x\| \geq c\|x\|$ for all $x \in X$ if and only if $\operatorname{Ker}(A)=\{0\}$ and $\operatorname{Ran}(A)$ is closed in X.
15. Let $T: C[0,1] \rightarrow C[0,1]$ be defined by $T(t)=\int_{0}^{t} x(\tau) d \tau$. Find $R(T)$ and obtain $T^{-1}: R(T) \rightarrow C[0,1]$. Examine if T^{-1} is linear and bounded.
16. Show that $\left\langle A e_{j}, e_{i}\right\rangle=(i+j+1)^{-1}$ for $0 \leq i, j \leq \infty$ defines a bounded operator $l^{2}(\mathbb{N} \cup\{0\})$ with $\|A\| \leq \pi$.
19.Let $S \in B L(\mathcal{H})$ where \mathcal{H} is a Hilbert space. Prove that for all $x, y \in \mathcal{H}$, $\langle S x, y\rangle=\frac{1}{4} \sum_{n=0}^{3} i^{n}\left\langle S\left(x+i^{n} y\right),\left(x+i^{n} y\right)\right\rangle$.
17. Check whether $\mathrm{C}^{1}[0,1]$ with the supremum norm is a Banach space
18. Show that the space l^{p} is complete, here p is fixed and $1 \leq p \leq \infty$.
22.Let $T: X \rightarrow Y$ be a continuous linear operator. Show that the Null space $\mathcal{N}(T)$ is closed.
19. Prove that a mapping T of a metric space X into a Metric space Y is continuous if and only if the inverse image of any open subset of Y is an open subset of X.

End

